Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Frontiers in chemistry ; 9, 2021.
Artigo em Inglês | EuropePMC | ID: covidwho-1688333

RESUMO

Glycosylation of viral envelope proteins is important for infectivity and immune evasion. The SARS-CoV-2 spike protein is heavily glycosylated and host-derived glycan modifications contribute to the formation of specific immunogenic epitopes, enhance the virus-cell interaction or affect virus transmission. On recombinant viral antigens used as subunit vaccines or for serological assays, distinct glycan structures may enhance the immunogenicity and are recognized by naturally occurring antibodies in human sera. Here, we performed an in vivo glycoengineering approach to produce recombinant variants of the SARS-CoV-2 receptor-binding domain (RBD) with blood group antigens in Nicotiana benthamiana plants. SARS-CoV-2 RBD and human glycosyltransferases for the blood group ABH antigen formation were transiently co-expressed in N. benthamiana leaves. Recombinant RBD was purified and the formation of complex N-glycans carrying blood group A antigens was shown by immunoblotting and MS analysis. Binding to the cellular ACE2 receptor and the conformation-dependent CR3022 antibody showed that the RBD glycosylation variants carrying blood group antigens were functional. Analysis of sera from RBD-positive and RBD-negative individuals revealed further that non-infected RBD-negative blood group O individuals have antibodies that strongly bind to RBD modified with blood group A antigen structures. The binding of IgGs derived from sera of non-infected RBD-negative blood group O individuals to blood group A antigens on SARS-CoV-2 RBD suggests that these antibodies could provide some degree of protection from virus infection.

2.
Front Plant Sci ; 12: 747500, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1468361

RESUMO

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in the virus-host cell interaction, and viral infection. The RBD is a major target for neutralizing antibodies, whilst recombinant RBD is commonly used as an antigen in serological assays. Such assays are essential tools to gain control over the pandemic and detect the extent and durability of an immune response in infected or vaccinated populations. Transient expression in plants can contribute to the fast production of viral antigens, which are required by industry in high amounts. Whilst plant-produced RBDs are glycosylated, N-glycan modifications in plants differ from humans. This can give rise to the formation of carbohydrate epitopes that can be recognized by anti-carbohydrate antibodies present in human sera. For the performance of serological tests using plant-produced recombinant viral antigens, such cross-reactive carbohydrate determinants (CCDs) could result in false positives. Here, we transiently expressed an RBD variant in wild-type and glycoengineered Nicotiana benthamiana leaves and characterized the impact of different plant-specific N-glycans on RBD reactivity in serological assays. While the overall performance of the different RBD glycoforms was comparable to each other and to a human cell line produced RBD, there was a higher tendency toward false positive results with sera containing allergy-related CCD-antibodies when an RBD carrying ß1,2-xylose and core α1,3-fucose was used. These rare events could be further minimized by pre-incubating sera from allergic individuals with a CCD-inhibitor. Thereby, false positive signals obtained from anti-CCD antibodies, could be reduced by 90%, on average.

3.
EBioMedicine ; 67: 103348, 2021 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1201238

RESUMO

BACKGROUND: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. METHODS: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. FINDINGS: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. INTERPRETATION: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms. FUNDING: WWTF, Project No. COV20-016; BOKU, LBI/LBG.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sítios de Ligação , Células CHO , COVID-19/imunologia , Cricetulus , Diagnóstico Precoce , Células HEK293 , Humanos , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA